A Fast Algorithm for Chebyshev, Fourier, and Sine Interpolation onto an Irregular Grid

نویسنده

  • JOHN P. BOYD
چکیده

A Chebyshev or Fourier series may be evaluated on the standard collocation grid by the fast Fourier transform (FFT). Unfortunately, the FFT does not apply when one needs to sum a spectral series at N points which are spaced irregularly. The cost becomes O(N’) operations instead of the FFTs O(N log N). This sort of “off-grid” interpolation is needed by codes which dynamically readjust the grid every few time steps to resolve a shock wave or other narrow features. It is even more crucial to semi-Lagrangian spectral algorithms for solving convectiondiffusion and Navier-Stokes problems because off-grid interpolation must be performed several times per time step. In this work, we describe an alternative algorithm. The first step is to pad the set of spectral coefficients {a,} with zeros and then take an FFT of length 3N to interpolate the Chebyshev series to a very fine grid. The second step is to apply either the Mth order Euler sum acceleration or (2M+ 1 )-point Lagrangian interpolation to approximate the sum of the series on the irregular grid. We show that both methods yield full precision with M < N, allowing an order of magnitude reduction in cost with no loss of accuracy. c 1992 Academic Press. Inc

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fast Algorithm for Chebyshev, Fourier & Sinc Interpolation Onto an Irregular Grid

A Chebyshev or Fourier series may be evaluated on the standard collocation grid by the Fast Fourier Transform (FFT). Unfortunately, the FFT does not apply when one needs to sum a spectral series at N points which are spaced irregularly. The cost becomes O(N2) operations instead of the FFT's O(N log N). This sort of "off-grid" interpolation is needed by codes which dynamically readjust the grid ...

متن کامل

Exponentially Convergent Fourier-Chebshev Quadrature Schemes on Bounded and Infinite Intervals

The Clenshaw Curtis method for numerical integration is extended to semiinfinite ([_0, 30] and infinite [-0% oc] intervals. The common framework for both these extensions and for integration on a finite interval is to (1) map the integration domain to tc[0, z], (2) compute a Fourier sine or cosine approximation to the transformd integrand via interpolation, and (3) integrate the approximation. ...

متن کامل

A Polynomial Approach to Fast Algorithms for Discrete Fourier-cosine and Fourier-sine Transforms

The discrete Fourier-cosine transform (cos-DFT), the discrete Fourier-sine transform (sin-DFT) and the discrete cosine transform (DCT) are closely related to the discrete Fourier transform (DFT) of real-valued sequences. This paper describes a general method for constructing fast algorithms for the cos-DFT, the sin-DFT and the DCT, which is based on polynomial arithmetic with Chebyshev polynomi...

متن کامل

An Algorithm Based on the Fft for a Generalized Chebyshev Interpolation

An algorithm for a generalized Chebyshev interpolation procedure, increasing the number of sample points more moderately than doubling, is presented. The FFT for a real sequence is incorporated into the algorithm to enhance its efficiency. Numerical comparison with other existing algorithms is given.

متن کامل

Multivariate polynomial interpolation on Lissajous-Chebyshev nodes

In this contribution, we study multivariate polynomial interpolation and quadrature rules on non-tensor product node sets linked to Lissajous curves and Chebyshev varieties. After classifying multivariate Lissajous curves and the interpolation nodes related to these curves, we derive a discrete orthogonality structure on these node sets. Using this discrete orthogonality structure, we can deriv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003